Масъала. \(x\) ва \(y\)-ро ёбед, агар:
$$C^{y-1}_x:(C^y_{x-2}+C^{y-2}_{x-2}+2C^{y-1}_{x-2}):C^{y+1}_x=3:5:5.$$
Ҳал.
\[C^{y-1}_x:(C^y_{x-2}+C^{y-2}_{x-2}+2C^{y-1}_{x-2}):C^{y+1}_x =3:5:5\]
\(C_n^m+C_n^{m+1}=C_{n+1}^{m+1}\)
\begin{multline}
C^y_{x-2}+C^{y-2}_{x-2}+2C^{y-1}_{x-2}=C^y_{x-2}+C^{y-2}_{x-2}+C^{y-1}_{x-2}+C^{y-1}_{x-2}=\\=(C^{y-1}_{x-2}+C^y_{x-2})+(C^{y-2}_{x-2}+C^{y-1}_{x-2})=C^y_{x-1}+C^{y-1}_{x-1}=C^{y-1}_{x-1}+C^y_{x-1}=C^y_x
\end{multline}
\(C^{y-1}_x:C^y_x:C^{y+1}_x=3:5:5\)
$$\left\{\begin{array}{rcl}C^{y-1}_x:C^y_x=3:5\\C^y_x:C^{y+1}_x=5:5\\ \end{array}\right.$$
\(C_n^m = \frac{n!}{(n - m)! m!}\),
ки дар ин ҷо
\(m \leq n; C_n^0 = 1;\)
\(C^{y-1}_x=\frac{x!}{(x-(y-1))!\cdot(y-1)!}=\frac{x!}{(x-y+1)!(y-1)!}\)
\(C^y_x=\frac{x!}{(x-y)!\cdot y!}\)
\(C^{y+1}_x=\frac{x!}{(x-(y+1))!\cdot(y+1)!}=\frac{x!}{(x-y-1)!(y+1)!}\)
$$\left\{\begin{array}{rcl}\frac{x!}{(x-y+1)!(y-1)!}:\frac{x!}{(x-y)!\cdot y!}=\frac{3}{5} \\ \\ \frac{x!}{(x-y)!\cdot y!}:\frac{x!}{(x-y-1)!(y+1)!} =\frac{5}{5}\end{array}\right.$$
$$\left\{\begin{array}{rcl}\frac{x!}{(x-y+1)!(y-1)!}\cdot\frac{(x-y)!\cdot y!}{x!}=\frac{3}{5} \\ \\ \frac{x!}{(x-y)!\cdot y!}\cdot\frac{(x-y-1)!(y+1)!}{x!} =1\end{array}\right.$$
$$\left\{\begin{array}{rcl}\frac{x!}{(x-y+1)(x-y)!(y-1)!}\cdot\frac{(x-y)!\cdot y\cdot(y-1)!}{x!}=\frac{3}{5} \\ \\ \frac{x!}{(x-y)(x-y-1)!\cdot y!}\cdot\frac{(x-y-1)!(y+1)\cdot y!}{x!} =1\end{array}\right.$$
$$\left\{\begin{array}{rcl}\frac{y}{x-y+1}=\frac{3}{5} \\ \\ \frac{y+1}{x-y}=1\end{array}\right.$$
Яъне, \(x-y=y+1 \Rightarrow x=2y+1\).
$$\left\{\begin{array}{rcl}\frac{y}{x-y+1}=\frac{3}{5} \\ \\ x=2y+1\end{array}\right.$$
$$\left\{\begin{array}{rcl}\frac{y}{2y+1-y+1}=\frac{3}{5} \\ \\ x=2y+1\end{array}\right.$$
Муодилаи \(\frac{y}{2y+1-y+1}=\frac{3}{5}\)-ро ҳал мекунем ва қимати тағйирёбандаи \(y\)-ро меёбем:
\(\frac{y}{2y+1-y+1}=\frac{3}{5}\)
\(\frac{y}{y+2}=\frac{3}{5}\)
\(3\cdot(y+2)=5y\)
\(3y+6=5y\)
\(5y-3y=6\)
\(2y=6\)
\(y=3\).
Азбаски \(x=2y+1\), пас мебарояд, ки \(x=2\cdot3+1 \Rightarrow x=6+1=7\). Яъне, \(x=7\).
Санҷиш.
Ҳангоми \(x=7\) ва \(y=3\) будан:
\(C^{y-1}_x=C^{3-1}_7=C^2_7\);
\(C^y_{x-2}=C^3_{7-2}=C^3_5\);
\(C^{y-2}_{x-2}=C^{3-2}_{7-2}=C^1_5\);
\(2C^{y-1}_{x-2}=2C^{3-1}_{7-2}=2C^2_5\);
\(C^{y+1}_x=C^{3+1}_7=C^4_7\).
Яъне, \(C^2_7:(C^3_5+C^1_5+2C^2_5):C^4_7\) ба \(3:5:5\) баробар бояд шавад.
\(C_7^2=\frac{7!}{(7-2)!\cdot2!}=\frac{7\cdot6\cdot5!}{5!\cdot2}=\frac{7\cdot6}{2}=7\cdot3=21\)
\(C_5^3=\frac{5!}{(5-3)!\cdot3!}=\frac{5\cdot4\cdot3!}{2!\cdot3!}=\frac{5\cdot4}{2}=5\cdot2=10\)
\(C_5^1=\frac{5!}{(5-1)!\cdot1!}=\frac{5\cdot4!}{4!\cdot1}=\frac{5}{1}=5\)
\(2C_5^2=2\cdot\frac{5!}{(5-2)!\cdot2!}=2\cdot\frac{5\cdot4\cdot3!}{3!\cdot2!}=2\cdot\frac{5\cdot4}{2}=5\cdot4=20\)
\(C_7^4=\frac{7!}{(7-4)!\cdot4!}=\frac{7\cdot6\cdot5\cdot4!}{3!\cdot4!}=\frac{7\cdot6\cdot5}{3\cdot2}=\frac{7\cdot6\cdot5}{6}=7\cdot5=35\)
\(C^{y-1}_x:(C^y_{x-2}+C^{y-2}_{x-2}+2C^{y-1}_{x-2}):C^{y+1}_x=C^2_7:(C^3_5+C^1_5+2C^2_5):C^4_7=21:(10+5+20):35=21:35:35=3:5:5\)
\(C^{y-1}_x:(C^y_{x-2}+C^{y-2}_{x-2}+2C^{y-1}_{x-2}):C^{y+1}_x=3:5:5\)
Яъне, \(x=7\) ва \(y=3\).
Ҷавоб: \(x=7\) ва \(y=3\).
Ҳалли муодилаи \(C^{y-1}_x:(C^y_{x-2}+C^{y-2}_{x-2}+2C^{y-1}_{x-2}):C^{y+1}_x=3:5:5\)
- Информация о материале
- Автор: Раҳматҷон Ҳакимов
- Категория: Комбинаторика ва биноми Нютон
- Просмотров: 529
- Таҳқиқи функсияи \(y = \frac{x^3-1}{4x^2}\)
- Таҳқиқи функсияи \(y = \ln{\frac{x+1}{x+2}}\)
- Таҳқиқи функсияи \(y = \frac{e^x}{x}\)
- Таҳқиқи функсияи \(y = -\frac{1}{4}(x^3-3x^2+4)\)
- Соҳаи муайянии функсияи \(y = \frac{x^2}{1+x}\)
- Соҳаи муайянии функсияи \(y = \sqrt{\cos x^2}\)
- Ҳисоб карда шавад: \(\lim\limits_{n \rightarrow \infty}\left(\frac{1}{n^2} + \frac{2}{n^2} + ... + \frac{n-1}{n^2} \right)\)
- Соҳаи муайянии функсияи \(y = \sqrt{\sin\left(\sqrt{x}\right)}\)
- Ҳисоб карда шавад: \(\lim\limits_{n \rightarrow \infty}\frac{1 + a + a^2 + ... + a^n}{1 + b + b^2 + ... + b^n}\)
- Соҳаи муайянии функсияи \(y = \log(x+2) + \log(x-2)\)